Nonstoichiometry and Electrical Resistivity in Two Mixed Metal Oxides, La₂NiO_{4-x} and LaSrNiO_{4-x}

Kenji Ishikawa,* Shin-ichi Kondo, Hirofumi Окаno, Shigenori Suzuki, and Yasuo Suzuki Department of Industrial Chemistry, Faculty of Engineering, Meiji University, Higashi-mita, Tama-ku, Kawasaki 214 (Received November 7, 1986)

Two mixed oxides, La_2NiO_{4-x} and $LaSrNiO_{4-x}$, had the K_2NiF_4 structure in the oxygen-pressure range from 58000 down to 130 Pa at 1173 K. The oxygen-vacancy concentration, x, in both La_2NiO_{4-x} and in $LaSrNiO_{4-x}$ at 1173 K was determined by thermogravimetric analysis in the oxygen-pressure range from 58000 to 1.3 Pa. The vacancy concentration of $LaSrNiO_{4-x}$ was greater than that of La_2NiO_{4-x} at the same oxygen pressure at 1173 K. The electrical resistivities of La_2NiO_{4-x} and $LaSrNiO_{4-x}$ were measured at 473—1173 K under an oxygen atmosphere at 98—58000 Pa. The density of the state and the drift mobility of oxygen stoichiometric La_2NiO_4 and $LaSrNiO_4$ were estimated from the resistivity data and from the results on the thermogravimetric analysis.

The mixed oxide La₂NiO₄, which was first prepared by Kniga and Zaretskaya, ¹⁾ has the very attractive property of a "gradual" semiconductor-metal transition.²⁻⁴⁾ Goodenough et al.⁵⁻⁷⁾ have previously proposed an invaluable band model which gives the origin of the semiconductor-metal transition of La₂NiO₄. The model, however, does not clearly explain why the transition proceeds "gradually." It seemed that it would be worthwhile from the electrochemical point of view to elucidate the driving force of the "gradual" semiconductor-metal transition of La₂NiO₄.

Recently, Rao et al.⁹⁾ have reported on the resistivity and the magnetic susceptibility of a single crystal of La₂NiO₄. They have found a very large positive coefficient of temperature, an irreversible transition, in the resistivity curve of La₂NiO₄ at 550 K. It was presumed that the irreversible transition was attributable to the effect of strain, crystal distortion, charge density waves, or nonstoichiometry. Their finding of the irreversible transition raised the question that the "gradual" semiconductor-metal transition of La₂NiO₄ might be related to the nonstoichiometry, particularly to that of the lattice oxygen.

By the way, the analogous compound, La_{2-x}Sr_xNiO₄, has also been reported to exhibit the "gradual" semiconductor-metal transition.^{3,10)} The temperature dependence of the electrical resistivity and the transport property of La_{2-x}Sr_xNiO₄ have previously been measured by the present authors under an inert atmosphere,⁸⁾ though the effect of oxygen deficiency on the electrical resistivity was not considered.

In this study, the effect of the oxygen vacancy on the electrical resistivity of $La_{2-x}Sr_xNiO_{4-y}$, especially on the resistivity of La_2NiO_{4-y} (x=0) and on that of LaSrNiO_{4-y}(x=1), was investigated at various temperatures and oxygen pressures.

Experimental

Preparation. The two oxides, La_2NiO_{4-x} and $LaSrNiO_{4-x'}$ were prepared by heating stoichiometric mixtures of La_2O_3 (Shin-etsu Chem. Ind. Co., Ltd.; 99.9%), $SrCO_3$ (prepared from reagent-grade $Sr(NO_3)_2$), and NiO (Kojundo Kagaku Co., Ltd.; 99.99%) in air at 1433 K for 25 h.

Electrical Resistivity Measurement. A sintered sample, 5

mm² in cross section and 5 mm long, was heated in 58000 Pa of oxygen at 1173 K for 2 h in a measurement cell before the resistivity measurements. The electrical resistivity of the sample was immediately measured in the same cell with the four-prove method in 98—58000 Pa of oxygen at 473—1173 K after preheating.

Thermogravimetric Analyses. The oxygen-vacancy concentrations, x, in La₂NiO_{4-x} and in LaSrNiO_{4-x} were determined by thermogravimetric analyses. A powdered sample (about 5 g) was preheated in 58000 Pa of oxygen at 1173 K for 5 h; it was then weighed at room temperature to an accuracy of 0.01 mg. The sample was heated again at the prescribed oxygen pressure at 1173 K for 5 h and then weighed at room temperature. The oxygen vacancy concentration of a sample was evaluated from the weight and the weight loss of the sample. The vacancy content, x, was calculated from this equation:

$$x = \frac{\Delta W \times M(\text{La}_2\text{NiO}_4 \text{ or LaSrNiO}_4)}{W \times M(\text{O})},$$
 (1)

where W was the weight of the sample after preheating, ΔW was the weight loss of the sample during the heating process, $M(\text{La}_2\text{NiO}_4 \text{ or LaSrNiO}_4)$ was the formula weight of La_2NiO_4 or LaSrNiO_4 , and M(O) was the atomic weight of oxygen. It was conveniently assumed for the calculation of x that $\text{La}_2\text{NiO}_{4-x}$ an LaSrNiO_{4-x} have very few oxygen vacancies, x=0, after preheating.

Results and Discussion

The crystal structure and the oxygen vacancy concentration of La_2NiO_{4-x} and $LaSrNiO_{4-x}$ are summarized in Table 1. The La_2NiO_{4-x} oxide was stable in oxygen down to 140 Pa at 1173 K, but was decomposed to some complex materials in vacuo (7 Pa) at the same temperature, while the $LaSrNiO_{4-x}$ oxide was stable to 1 Pa of oxygen at 1173 K.

The electrical resistivities of La₂NiO_{4-x} and LaSrNiO_{4-x} were measured in the oxygen pressure range from 58000 to 100 Pa (Figs. 1 and 2). The resistivities of La₂NiO_{4-x} and LaSrNiO_{4-x} are not oxygen-pressure-dependent below 581 K, but they decrease with an increase in the oxygen pressure over 673 K. The irreversible transition at 550 K found by Rao et al.⁹⁾ was not observed in the resistivity curves of La₂NiO_{4-x} in Fig. 1. The resistivity data in Fig. 1 also show that the electrical resistivity of La₂NiO_{4-x} is not

Formula	P/Pa ^{a)}	$\Delta W/W^{ m b)}$	x c)	Phase
La₂NiO₄	58000	0.00000	0.0000	La ₂ NiO ₄
	31100	-0.00002	-0.0005	La ₂ NiO ₄
	13100	0.00023	0.0057	La ₂ NiO ₄
	5870	0.00032	0.0080	La ₂ NiO ₄
	2670	0.00043	0.0107	La ₂ NiO ₄
	400	0.00083	0.0207	La ₂ NiO ₄
	140	0.00090	0.0226	La ₂ NiO ₄
	7	0.00761	0.1905	Decomposed
LaSrNiO₄	58000	0.00000	0.0000	LaSrNiO ₄
	30700	0.00003	0.0007	LaSrNiO ₄
	10700	0.00043	0.0093	LaSrNiO ₄
	4930	0.00076	0.0165	LaSrNiO ₄
	1330	0.00114	0.0250	LaSrNiO ₄
	430	0.00149	0.0325	LaSrNiO ₄
	130	0.00532	0.116	LaSrNiO ₄
	1	0.01035	0.226	LaSrNiO₄

Table 1. Phases and Oxygen-Defect Concentrations of La₂NiO_{4-x} and LaSrNiO_{4-x} at Various Oxygen Pressures at 1173 K

c) x in La₂NiO_{4-x} or x in LaSrNiO_{4-x} (see. Eq. 1).

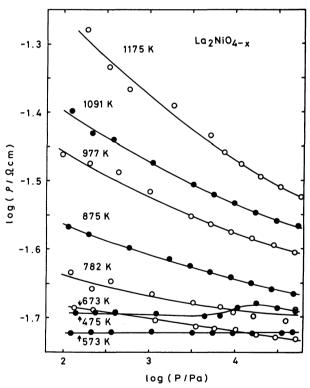
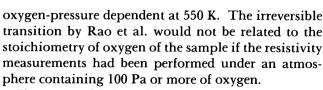



Fig. 1. Oxygen pressure dependence of electrical resistivity for La_2NiO_{4-x} .

Figures 1 and 2 show that the slopes in the resistivity curves of La₂NiO_{4-x} and LaSrNiO₄₋ are negative over 673 K. Both La₂NiO_{4-x} and LaSrNiO_{4-x} are p-type conductors in this temperature range. The slope of La₂NiO_{4-x} (Fig. 1) is much larger than that of LaSr-

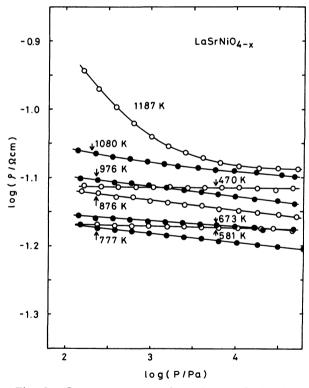


Fig. 2. Oxygen pressure dependence of electrical resistivity for LaSrNiO_{4-x}.

 NiO_{4-x} (Fig. 2) at the same temperature.

Figure 3 shows the temperature dependence of the electrical resistivities for La₂NiO_{4-x} and LaSrNiO_{4-x} at 316, 3160, and 31600 Pa of oxygen, where the resistivity plots are based on readings of Figs. 1 and 2. A "gradual" semiconductor-metal transition is observed in the resistivity curves of La₂NiO_{4-x} and LaSrNiO_{4-x} at any oxygen pressure. The resistivity curves in Fig. 3 seem to imply that the release of the lattice oxygen is not responsible for the origin of the appearance of the

a) Oxygen pressure. b) Decrease in weight of the sample during the heating process in oxygen at 1173 K.

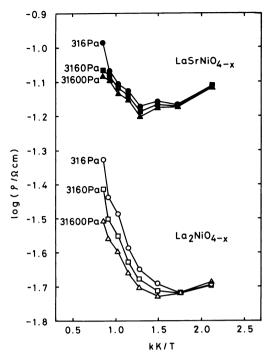


Fig. 3. Temperature dependence of electrical resistivity for La₂NiO_{4-x} and for LaSrNiO_{4-x}.

"gradual" semiconductor-metal transition. The transition temperature is, however, apparently affected by the atmospheric oxygen pressure, for the transition point is shifted to a higher temperature with the increase in the oxygen pressure.

The oxygen-pressure dependence of the oxygen-vacancy concentration of La₂NiO_{4-x} and LaSrNiO_{4-x} is given in Fig. 4. The x values, the oxygen-vacancy concentration, of La₂NiO_{4-x} and LaSrNiO_{4-x} are almost equal to 0.00 at $\log(P/Pa)$ =4.5 and 4.8. The x value of La₂NiO_{4-x} is greater than that of LaSrNiO_{4-x} at the same oxygen pressure at 1173 K. The lattice oxygen of LaSrNiO_{4-x} is much easily released from the bulk than that of La₂NiO_{4-x}.

Figure 5 shows the electrical conductivity vs. the oxygen vacancy concentration plots of La_2NiO_{4-x} and $LaSrNiO_{4-x}$ at 1173 K. The density of the charge carriers of $LaSrNiO_4$ should be larger than that of La_2NiO_4 at 1173 K, as the slope of the conductivity curve of La_2NiO_{4-x} is larger than that of $LaSrNiO_{4-x}$.

For obtaining the density of the charge carriers of oxygenical-stoichiometric La₂NiO₄ and LaSrNiO₄, the data were treated as follows. In general, the electrical conductivity, σ, of a compound can be written as:

$$\sigma = ne\mu, \tag{2}$$

where n is the density of the charge carriers and where μ is the drift mobility. If (the density of the charge carriers) n is divided into two densities, that is, the electronic density at the stoichiometric oxygen composition, n_0 , and the density produced from the oxygen vacancy, n_v , the electrical conductivity of the compound will be altered thus:

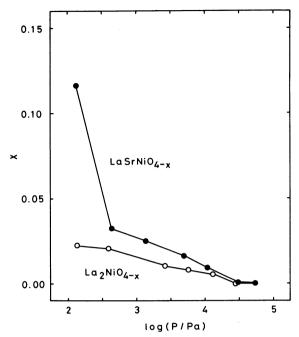


Fig. 4. Oxygen pressure dependence of oxygen content x for La₂NiO_{4-x} and for LaSrNiO_{4-x}.

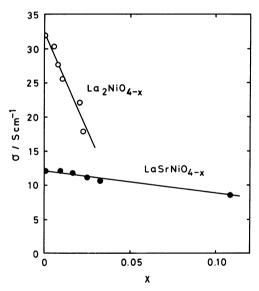


Fig. 5. Oxygen content dependence of electrical conductivity for La₂NiO_{4-x} and for LaSrNiO_{4-x}.

$$\sigma = (n_0 + n_V)e\mu$$

= $(n_0e\mu) + (e\mu)n_V$. (3)

In the case of La₂NiO_{4-x} and LaSrNiO_{4-x}, the electronic density, n_v , is written as:

$$n_{V} = \frac{Ax}{V(\text{La}_{2}\text{NiO}_{4-x} \text{ and LaSrNiO}_{4-x})}$$
$$= \frac{AZx}{a_{0}^{2}c_{0}}, \tag{4}$$

where A is a constant of 1 or 2, x is the x in La₂NiO_{4-x} or LaSrNiO_{4-x}, V(La₂NiO_{4-<math>x} or LaSrNiO_{4-x}) is the lattice volume^{10,11)}, Z is the crystallographic Z value</sub>

(which is 2 in the case of La₂NiO₄ and LaSrNiO₄), and a_0 and c_0 are the lattice constant at room temperature (a_0 =0.38617 nm, c_0 =1.2683 nm for La₂NiO_{4-x}¹¹⁾ and a_0 =0.3821 nm, c_0 =1.2550 nm for LaSrNiO_{4-x}¹⁰⁾).

In the case of the electron conduction, the A constant is unity when a neutral oxygen vacancy, which is formed by the transfer of an oxygen on a normal site to the gaseous state, donates only one electron to the conduction band:

$$V_0^X \rightleftharpoons V_0^{\cdot} + e^{\prime}.$$
 (5)

The A constant is 2 when the vacancy gives two electrons to the band 12):

$$V_0^X \rightleftharpoons V_0^{\cdot \cdot} + 2e',$$
 (6)

but A is -1 (Eq. 5) or -2 (Eq. 6) in the case of hole conduction.

The electrical conductivity of La_2NiO_{4-x} or $LaSrNiO_{4-x}$, therefore, can be expressed as:

$$\sigma = (n_0 e \mu) + \frac{AZxe\mu}{a_0^2 c_0}.$$
 (7)

The electrical conductivity vs. x plot in Fig. 5 show that the conductivities of La₂NiO_{4-x} and LaSrNiO_{4-x} decrease linearly with the increase in x, as is to be expected from Eq. 7. This result supports the validity of the assumption at the induction of Eq. 7 that is, Eqs. 3 and 4. The negative slopes in the conductivity curves imply that the holes are charge carriers of La₂NiO_{4-x} and of LaSrNiO_{4-x} (A<0).

The drift mobility, μ , and the density of the holes, n_0 , of oxygen stoichiometric La₂NiO₄ or LaSrNiO₄ are given from the slope and the intercept of the conductivity line in Fig. 5 by applying Eq. 7. The results are tabulated in Table 2. Unfortunately, the calculated values of n_0 and μ have some equivocality, as it is difficult to determine from the conductivity data where A is -1 or where it is -2. Thus, n_0 and μ were calculated in two ways, namely, in the cases of A=-1 and -2.

The drift mobility of La_2NiO_4 is significantly larger than that of $LaSrNiO_4$. However, the density of the charge carriers of $LaSrNiO_4$ is much greater than that of La_2NiO_4 . Table 2 shows that the 0.056—0.112 electron for La_2NiO_4 and the 0.38—0.76 electron for $LaSrNiO_4$ are in a formula.

Goodenough's model for $\text{La}_2\text{NiO}_4^{5-7)}$ suggests that the electronic density of a state is not so high at the top of the conduction band of La_2NiO_4 in the metallic state. The observed value of the density, n_0 , was $5.9-11.9\times10^{20}$ cm⁻³, as is shown in Table 2.

The LaSrNiO₄ oxide has the same crystal structure

Table 2. Drift Mobilities and Densities of State for La₂NiO₄ and LaSrNiO₄ at 1173 K

Formula	A ^{a)}	μ(drift) ^{b)}	$n_0^{\mathrm{c})}$	Electrons
		cm² V ⁻¹ s ⁻¹	10 ²⁰ cm ⁻³	Formula
La ₂ NiO ₄	-1	0.34	5.9	0.056
	-2	0.17	11.9	0.112
LaSrNiO4	-1	0.018	41.3	0.38
	-2	0.0091	82.6	0.76

a) "A" is a constant in Eq. 7 $O \rightleftharpoons V_0^{X} + 1/20_2$ $A = \pm 1: V_0^{X} \rightleftharpoons V_0 + e'$

 $A = \pm 2$: $V_0^x \rightleftharpoons V_0^{-1} + 2e'$ b) Drift mobility. c) Density of state.

as La₂NiO₄. If the band structure of LaSrNiO₄ is the same as that of Goodenough's model for La₂NiO₄ and if LaSrNiO₄ has fewer conduction electrons than LaSrNiO₄ by one electron a formula, one hole must exist in LaSrNiO₄. Table 2 indicates that the number of holes in LaSrNiO₄ is somewhat smaller than the expected value of one. This result may imply that a few holes are not free in the conduction band of LaSrNiO₄.

References

- 1) M. V. Kniga and R. A. Zaretskaya, Izv. Akad. Nauk SSSR, Neorg. Mater., 7, 464 (1971).
- 2) P. Ganguly and C. N. R. Rao, Mat. Res. Bull., 8, 405 (1973).
- 3) I. F. Kononyuk, N. G. Surmach, and L. V. Makhnach, Izv. Akad. Nauk SSSR, Neorg. Mater., 18, 1222 (1982).
- 4) L. F. Kononyuk, N. G. Surmach, and V. Maklnach, *Inorg. Mater.*, **18**, 1029 (1982).
 - 5) J. B. Goodenough, Mat. Res. Bull., 8, 423 (1973).
- 6) J. B. Goodenough and S. Ramasesha, *Mat. Res. Bull.*, 17, 383 (1982).
- 7) K. K. Singh, P. Ganguly, and J. B. Goodenough, J. Solid State Chem., **52**, 254 (1984).
- 8) K. Ishikawa, S. Kondo, Y. Suzuki, S. Takayama, K. Shimada, and Y. Suzuki, *Bull. Chem. Soc. Jpn.*, **59**, 703 (1986).
- 9) C. N. R. Rao, D. J. Buttrey, N. Otsuka, P. Ganguly, H. R. Harrison, C. J. Sandberg, and J. M. Honig, *J. Solid State Chem.*, **51**, 266 (1984).
- 10) J. Gopalakrishnan, G. Colsmann, and B. Reuter, J. Solid State Chem., 22, 145 (1977).
- 11) JCPDS Card 33-712.
- 12) Per Kofstad, "Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides," in "Wiley Series on the Science and Technology of Materials," Wiley-Interscience, New York (1972), Chap. 2, pp. 18—19.